Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
J Infect Dis ; 2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-2304677

ABSTRACT

BACKGROUND: The COVID-19 pandemic highlighted the need for early detection of viral infections in symptomatic and asymptomatic individuals to allow for timely clinical management and public health interventions. METHODS: Twenty healthy adults were challenged with an influenza A (H3N2) virus and prospectively monitored from 7 days before through 10 days after inoculation, using wearable electrocardiogram and physical activity sensors (Clinical Trial: NCT04204493; https://clinicaltrials.gov/ct2/show/NCT04204993). This framework allowed for responses to be accurately referenced to the infection event. For each participant, we trained a semi-supervised multivariable anomaly detection model on data acquired before inoculation and used it to classify the post-inoculation dataset. RESULTS: Inoculation with this challenge virus was well-tolerated with an infection rate of 85%. With the model classification threshold set so that no alarms were recorded in the 170 healthy days recorded, the algorithm correctly identified 16 of 17 (94%) positive presymptomatic and asymptomatic individuals, on average 58 hours post inoculation and 23 hrs before the symptom onset. CONCLUSION: The data processing and modeling methodology show promise for the early detection of respiratory illness. The detection algorithm is compatible with data collected from smartwatches using optical techniques but needs to be validated in large heterogeneous cohorts in normal living conditions.

3.
Sci Rep ; 12(1): 11714, 2022 07 09.
Article in English | MEDLINE | ID: covidwho-1927103

ABSTRACT

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.


Subject(s)
COVID-19 , Chromatin , Antiviral Agents , COVID-19/genetics , Chromatin/genetics , Humans , Immunoglobulin G/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Seroconversion , Severity of Illness Index
4.
JAMA Netw Open ; 4(9): e2128534, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1441922

ABSTRACT

Importance: Currently, there are no presymptomatic screening methods to identify individuals infected with a respiratory virus to prevent disease spread and to predict their trajectory for resource allocation. Objective: To evaluate the feasibility of using noninvasive, wrist-worn wearable biometric monitoring sensors to detect presymptomatic viral infection after exposure and predict infection severity in patients exposed to H1N1 influenza or human rhinovirus. Design, Setting, and Participants: The cohort H1N1 viral challenge study was conducted during 2018; data were collected from September 11, 2017, to May 4, 2018. The cohort rhinovirus challenge study was conducted during 2015; data were collected from September 14 to 21, 2015. A total of 39 adult participants were recruited for the H1N1 challenge study, and 24 adult participants were recruited for the rhinovirus challenge study. Exclusion criteria for both challenges included chronic respiratory illness and high levels of serum antibodies. Participants in the H1N1 challenge study were isolated in a clinic for a minimum of 8 days after inoculation. The rhinovirus challenge took place on a college campus, and participants were not isolated. Exposures: Participants in the H1N1 challenge study were inoculated via intranasal drops of diluted influenza A/California/03/09 (H1N1) virus with a mean count of 106 using the median tissue culture infectious dose (TCID50) assay. Participants in the rhinovirus challenge study were inoculated via intranasal drops of diluted human rhinovirus strain type 16 with a count of 100 using the TCID50 assay. Main Outcomes and Measures: The primary outcome measures included cross-validated performance metrics of random forest models to screen for presymptomatic infection and predict infection severity, including accuracy, precision, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC). Results: A total of 31 participants with H1N1 (24 men [77.4%]; mean [SD] age, 34.7 [12.3] years) and 18 participants with rhinovirus (11 men [61.1%]; mean [SD] age, 21.7 [3.1] years) were included in the analysis after data preprocessing. Separate H1N1 and rhinovirus detection models, using only data on wearble devices as input, were able to distinguish between infection and noninfection with accuracies of up to 92% for H1N1 (90% precision, 90% sensitivity, 93% specificity, and 90% F1 score, 0.85 [95% CI, 0.70-1.00] AUC) and 88% for rhinovirus (100% precision, 78% sensitivity, 100% specificity, 88% F1 score, and 0.96 [95% CI, 0.85-1.00] AUC). The infection severity prediction model was able to distinguish between mild and moderate infection 24 hours prior to symptom onset with an accuracy of 90% for H1N1 (88% precision, 88% sensitivity, 92% specificity, 88% F1 score, and 0.88 [95% CI, 0.72-1.00] AUC) and 89% for rhinovirus (100% precision, 75% sensitivity, 100% specificity, 86% F1 score, and 0.95 [95% CI, 0.79-1.00] AUC). Conclusions and Relevance: This cohort study suggests that the use of a noninvasive, wrist-worn wearable device to predict an individual's response to viral exposure prior to symptoms is feasible. Harnessing this technology would support early interventions to limit presymptomatic spread of viral respiratory infections, which is timely in the era of COVID-19.


Subject(s)
Biometry/methods , Common Cold/diagnosis , Influenza A Virus, H1N1 Subtype , Influenza, Human/diagnosis , Rhinovirus , Severity of Illness Index , Wearable Electronic Devices , Adult , Area Under Curve , Biological Assay , Biometry/instrumentation , Cohort Studies , Common Cold/virology , Early Diagnosis , Feasibility Studies , Female , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza, Human/virology , Male , Mass Screening , Models, Biological , Rhinovirus/growth & development , Sensitivity and Specificity , Virus Shedding , Young Adult
5.
Nat Commun ; 12(1): 1079, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087444

ABSTRACT

SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a powerful transcriptomic response in peripheral blood with conserved components that are heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92-0.98]). The transcriptome in peripheral blood reveals both diverse and conserved components of the immune response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Sequence Analysis, RNA/methods , Transcriptome/genetics , COVID-19/blood , COVID-19/virology , Cytokines/genetics , Host-Pathogen Interactions , Humans , Influenza, Human/genetics , Pneumonia, Bacterial/genetics , SARS-CoV-2/physiology , Signal Transduction/genetics
6.
BMJ Open ; 10(11): e040612, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-913762

ABSTRACT

OBJECTIVES: To determine aetiology of illness among children and adults presenting during outbreak of severe respiratory illness in Southern Province, Sri Lanka, in 2018. DESIGN: Prospective, cross-sectional study. SETTING: 1600-bed, public, tertiary care hospital in Southern Province, Sri Lanka. PARTICIPANTS: 410 consecutive patients, including 371 children and 39 adults, who were admitted with suspected viral pneumonia (passive surveillance) or who met case definition for acute respiratory illness (active surveillance) in May to June 2018. RESULTS: We found that cocirculation of influenza A (22.6% of cases), respiratory syncytial virus (27.8%) and adenovirus (AdV) (30.7%; type B3) was responsible for the outbreak. Mortality was noted in 4.5% of paediatric cases identified during active surveillance. Virus type and viral coinfection were not significantly associated with mortality. CONCLUSIONS: This is the first report of intense cocirculation of multiple respiratory viruses as a cause of an outbreak of severe acute respiratory illness in Sri Lanka, and the first time that AdV has been documented as a cause of a respiratory outbreak in the country. Our results emphasise the need for continued vigilance in surveying for known and emerging respiratory viruses in the tropics.


Subject(s)
Respiratory Tract Infections , Adult , Child , Cross-Sectional Studies , Disease Outbreaks , Humans , Infant , Prospective Studies , Respiratory Tract Infections/epidemiology , Sri Lanka/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL